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We demonstrate that the occurrence of Edge-Localized-Modes (ELM) crashes does not depend
only on the linear peeling-ballooning threshold, but also relies on nonlinear processes. Wave-wave
interaction constrains the growth time of a mode, thus inducing a shift in the criterion for triggering
an ELM crash. An ELM crash requires the P-B growth rate to exceed a critical value c > cc, where
cc is set by 1=!sc, and !sc is the averaged mode phase coherence time. For 0 < c < cc, P-B
turbulence develops but drives enhanced turbulent transport. We also show that electron inertia
dramatically changes the instability threshold when density is low. However, P-B turbulence
alone cannot generate enough current transport to allow fast reconnection during an ELM crash.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4875332]

I. INTRODUCTION

An understanding of the periodic burst of Edge-
Localized-Modes (ELMs)1 at the H-mode pedestal is of cru-
cial importance to present and future tokamaks such as
ITER.2 ELMs are believed to be triggered mainly by ideal
MHD instabilities. The peeling-ballooning model3 relates
the onset of ELMs to linear peeling-ballooning modes, which
are driven unstable by large pedestal current and pressure
gradients. The peeling-ballooning model provides a simple,
widely used criterion for the onset of ELMs. For a given
equilibrium, if the maximum linear growth rate of peeling-
ballooning modes is positive, then an ELM crash is
predicted.

However, there are many experiments that cannot be
explained by this linear peeling-ballooning model. In
these experiments, it is found that before the ELM crash,
the pedestal gradient has already crossed the linear stabil-
ity boundary and is deep into the linearly unstable
region.4 Measurements from ASDEX-U show that edge
profiles reached their final shape a long time prior to
when the next ELM occurs, which is not consistent with
the peeling-ballooning model.5 Moreover, according to
the EPED model,6 there is kinetic ballooning mode
(KBM) turbulence in the pedestal prior to an ELM crash.
Thus, the impact of pedestal turbulence on ELM crashes
is an interesting issue to investigate.

Another issue important to ELM dynamics is related to
hyper-resistivity. In a previous study, hyper-resistivity was
demonstrated to be necessary for fast reconnection during
the ELM crash.7 Without hyper-resistivity, the current layer

which forms will eventually be smaller than the grid resolu-
tion, so the simulation fails. However, in the previous study,
hyper-resistivity was not determined self-consistently, but
based on theoretical motivated estimates. Considering the
importance of hyper-resistivity to ELM crashes, nonlinear
ELM simulations with self-consistent hyper-resistivity are
necessary to obtain a better understanding of ELM
dynamics.

In this paper, these questions are studied via numerical
simulations by using the global two-fluid simulation code
BOUTþþ.8 We demonstrate that once the pedestal becomes
linearly unstable to peeling-ballooning modes, ELMs are not
triggered immediately. Instead, a state of self-generated tur-
bulence develops. The pedestal can keep evolving to higher
pressure gradient because the background turbulence will
interrupt the rapid growth of linear instability via nonlinear
mode coupling. Finally, ELMs are triggered once the maxi-
mum linear growth rate of the system satisfies a new relation
c > cc, where cc is the critical growth rate, which is deter-
mined by the ambient background turbulence.9

We also studied the linear and nonlinear impacts of elec-
tron inertia as a means to realize hyper-resistivity. When
density is low, electron inertia dramatically destabilizes
peeling-ballooning modes and reduces the threshold for
instability. With P-B turbulence, electron inertia can gener-
ate current transport, but this is still not enough to allow an
ELM crash. Our results indicate that successful nonlinear
ELM simulations with self-consistent hyper-resistivity need
to include pre-existing micro-turbulence and, thus, this prob-
lem is intrinsically a multiscale one.

The remainder of the paper is organized as follows:
Sec. II describes the nonlinear ELM model and Sec. III
describes the impact of electron inertia. Section IV is the
summary and discussion.

a)Paper YI2 2, Bull. Am. Phys. Soc. 58, 365 (2013).
b)Invited speaker.
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II. NONLINEAR ELM MODEL

A. Simulation model and equilibriums

The well-benchmark BOUTþþ (Ref. 8) 3-field nonlin-
ear reduced MHD model7 is employed in this work. The
equations and definitions are as follow:

d-
dt

¼ BrkJk þ 2b0 # j $r ~P þ likrk-

% 1

2xci
r2

?½/T ;Pi' % ½r2
?/T ;Pi' % ½/T ;r2

?Pi'
! "

;
(1)

d ~P

dt
þ VE $rP0 ¼ 0; (2)

@Ak
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¼ %@k/T þ

g
l0

r2
?Ak %

gH
l0

r4
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n0e
r2

?Pi

# $
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Jk ¼ Jk0 %
1

l0
r2
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where d=dt ¼ @=@tþ VET $r, VET ¼ b0 #r/T=B0, /T

¼ /0 þ /, rkF ¼ B@kðF=BÞ, @k ¼ b0 $rþ ~b $r, ~b ¼ rAk
#b0=B, and j ¼ b $rb is curvature. Resistivity and hyper-

resistivity are fixed to be S ¼ l0R0vA=g ¼ 2# 1010 and

aH ¼ gHR
2
0=g ¼ 10%4. The equilibrium E# B flow is

assumed to balance the ion diamagnetic flow, so we have /0

¼ %P0=2n0e. Additional gyroviscous terms are included,10

where xci ¼ eB=mi, Pi ¼ P=2, and ½f ; g' ¼ b#rf
B $rg is the

Poisson bracket. The role of ion diamagnetic effects on
peeling-ballooning modes is well discussed in Refs. 7 and
10, while electron diamagnetic effects are not included. This
set of equations can describe the nonlinear evolution of
peeling-ballooning modes and the following ELM crash.

Resistivity, hyper-resistivity, and parallel viscosity are
fixed to be S ¼ l0R0vA=g ¼ 2# 1010, SH ¼ l0R

3
0vA=gH

¼ 2# 1014, and lik ¼ 0:1xAR2, respectively. The shifted
circular equilibrium, we use has minor radius a ¼ 1:22m,
major radius R0 ¼ 3:53m, and toroidal magnetic field
Bt ¼ 1:99 T. The profiles for equilibrium pressure P0 and
safety factor q are plotted in Fig. 1(a). The normalized pres-
sure gradient is a ¼ %2l0q

2R0P
0

0=B
2 ¼ 2:17 and magnetic

shear is s ¼ rq0=q ¼ 3:81 at the peak pressure gradient
location. This equilibrium is linearly unstable to peeling-
ballooning modes. The linear growth rates and real frequen-
cies are plotted in Figs. 1(b) and 1(d). The most unstable
mode has toroidal mode number n¼ 20 with normalized linear
growth rate c=xA ¼ 0:034. According to peeling-ballooning
theory, this equilibrium will have an ELM crash, because it is
unstable to P-B modes.

B. Single-mode-simulation (SMS)
and multiple-mode-simulation (MMS)

1. Simulation results

If the linear P-B model is correct, the initial condition
should not change the result, so long as the initial

FIG. 1. (a) Pressure (black) and safety
factor q (blue) profile; (b) linear
growth rates versus toroidal mode
number; (c) toroidal spectrum of the
initial perturbation for single-mode-
simulation (red) and multiple-mode-
simulation (black); (d) real frequency
versus toroidal mode number.
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perturbation has a small amplitude. We tested this point by
comparing two different initializations. The two cases are
called SMS and MMS, where the initial perturbations for
SMS and MMS are defined as follow:

SMS ~f t¼0 ¼ f0G1ðwÞG2ðhÞcos nf; (6)

MMS ~f t¼0 ¼ f0G1ðwÞG2ðhÞ
X160

n¼0

An cosðnfþ uÞ: (7)

Here, w, h, and f are the radial, poloidal, and toroidal coordi-
nate, respectively. Considering the localized nature of
peeling-ballooning modes, G1 and G2 are set to be Gaussian
functions. In SMS, the initial perturbation has toroidal mode
number n¼ 20, which is the most unstable mode. In MMS,
the initial perturbation is a toroidal spectrum with random
amplitude and phase. In both cases, the initial perturbation
has amplitude of dp=p0 ¼ 10%4 set by f0, so they both start
from the linear phase. To save simulation time and increase
the efficiency, a toroidal segment with n¼ 5 is used in our
simulation, so the modes we simulate are n ¼ 5i, where i is a
integer from 0 to 32.

The evolution of pressure perturbations at the outer mid-
plane is shown in Fig. 2 for SMS (a)–(c) and MMS (d)–(f).
Note that only 1/5 of the whole torus is shown here. In the
linear phase (t ¼ 10sA; here, sA ¼ 3:5# 10%7s is the Alfv"en
time), SMM has a well-defined toroidal pattern with mode
number n¼ 20 (Fig. 2(a)), while in MMS, the pattern is
dominated by n¼ 20 but is disrupted by other modes
(Fig. 2(d)). In the early nonlinear phase (t ¼ 130sA), an ELM
crash occurs in SMS as shown in Fig. 2(b), where the radial
separation of positive and negative perturbations represents
the generation of filaments and the pedestal collapse. The
positive perturbation moves outward and forms filaments.
Simultaneously, the negative perturbation moves inward and

causes the collapse of the pressure profile. However, in
MMS, the perturbation evolves into a turbulent state with
random fluctuation distribution, as shown in Fig. 2(e). No
filaments are generated, so there is no ELM crash in MMS.
As the perturbation evolves into the late nonlinear phase,
both cases show a turbulent state but with different spatial
distributions. In SMS, positive and negative perturbations
are completely separated and widely extended in radial
(Fig. 2). In MMS, the turbulence does not radially extended
and is localized near peak pressure gradient.

Unlike the original definition of 3D filaments, which are
widely considered to be finger-like structures;3,11 here, we
define the 3D filament as the coherent helical perturbation,
which moves and bursts outward, as shown in experimental
observations.12 The 3D structures of the pressure perturba-
tion are shown in Fig. 3. For SMS, the perturbation satisfies
this definition. But, for MMS, the perturbation does not have
coherent structure along field lines and it does not move out-
ward. We can classify the turbulent perturbations in MMS as
P-B turbulence, because it is driven by peeling-ballooning
modes.

Figure 4(a) shows the time evolution of ELM size,
which measures the energy loss during the ELM crash and is
defined as

DELMðtÞ ¼

ðWin

Wout

dW!Jdhdf P0 % hPðtÞif
& '

ðWin

Wout

dW!JdhdfP0

: (8)

Here, Win is the inner boundary of the simulation domain
and Wout is chosen to be the location of the peak pressure
gradient. In SMS, a typical ELM crash occurs at t ¼ 115sA,
as indicated by the sudden increase in ELM size. This is con-
sistent with linear theory. However, in MMS, an ELM crash

FIG. 2. Pressure perturbation at the outer mid-plane for SMS (a)–(c) and MMS (d)–(f) at three different times. The toroidal segment is 5.
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does not appear, but is replaced by slower turbulent trans-
port. The energy loss for MMS is dramatically reduced, as
compared with that for SMS. Clearly, MMS results disagree
with the linear P-B theory of ELM crashes. Figure 4(b)
shows the evolution of the pressure profile, where we can see
a clear collapse in SMS, while the profile remains unchanged
in MMS. SMS is consistent with the linear peeling-
ballooning model, but MMS is not. These results show that

the existence of linear instability is not sufficient for predict-
ing ELM crashes.

2. Phase coherence time

More understanding of the difference between SMS and
MMS can be obtained from considering the evolution of dif-
ferent modes. From Fig. 5, it is obvious that a peak at n¼ 20
appears in SMS at t ¼ 250sA. But, in MMS, there is no such
peak, which means no mode is dominant in MMS. The dif-
ferent spectra are the result of different modes evolution.

In SMS, since only the n¼ 20 mode is initialized, it can
grow to a large amplitude without any interruption prior to
the ELM crash, as shown in Fig. 6(a). Note that before the
ELM crash, only harmonics of the n¼ 20 mode appear and
these harmonics nearly disrupt the n¼ 20 mode. Other
modes are excited non-linearly at the ELM crash. In MMS,
all modes grow simultaneously, as shown in Fig. 6(b), and
the linear phase is much shorter than for SMS. Thus, no sin-
gle mode has enough time to grow to large amplitude. In this

FIG. 3. The isosurfaces show the 3D
structure of the pressure perturbations
in SMS (upper) and MMS (lower) at
t ¼ 140sA.

FIG. 4. (a) Time evolution of ELM size for SMS (red) and MMS (black);
(b) total pressure profiles at t ¼ 300sA for SMS (red) and MMS (black).
Blue curve is the equilibrium pressure profile.

FIG. 5. The toroidal spectrum of potential at t ¼ 250sA for SMS (red) and
MMS (black).
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way, the ELM crash event is replaced by a state of P-B tur-
bulence. This result implies that the growth time of a mode
is important to the ELM crash.

The difference between SMS and MMS can be
explained using the flow chart shown in Fig. 7. To trigger an
ELM crash, the P-B perturbation must grow to a large ampli-
tude to lead to magnetic reconnection. The growth of the
mode depends on both linear drive and nonlinear mode inter-
action. For a sufficient linear drive, both finite growth rate
and a sufficiently long growth time are required. According
to our model and equilibrium, the linear drive is dominated
by the pressure gradient, thus the curvature term in Eq. (1)
determines the linear growth rate. For a mode to extract the
free energy from the equilibrium pressure gradient via the
curvature term, pressure and potential perturbations must
sustain the phase relation favorable to growth. Here, we
define the relative phase between pressure and potential
perturbation as duðn;w; h; tÞ ¼ argðP̂nðw; h; tÞ=/̂nðw; h; tÞÞ,

du 2 ½%p; p', where P̂n and /̂n are the nth toroidal Fourier
component of the pressure and potential perturbations,
respectively. The relative phase is important because it deter-
mines whether or not the ballooning mode extracts free
energy from the pressure gradient. According to Eq. (1), the
dependence of the kinetic energy ~V

2

E#B;n on the relative
phase is

@ ~V
2

E#B;n

@t
/ %2<ðin/̂

*
nP̂nb0 # j $rfÞ / sin du: (9)

Thus, the curvature term drives ballooning modes when
0 < du < p (phase for growth) and damps ballooning mode
when %p < du < 0 (phase for damping). The time duration
with positive du determines the growth time for the linear
drive, and thus is defined as the phase coherence time (PCT)
scðnÞ. In linear theory, since there is no mode interaction, an
unstable mode has infinitely long PCT, i.e., sc ! 1. This

FIG. 6. (a) Time evolution of n¼ 20 (red), n¼ 15 (blue), and n¼ 40 (green) modes in SMS; (b) time evolution of n¼ 20 (red), n¼ 15 (blue), and n¼ 40
(green) modes in MMS; (c) evolution of relative phase du (blue) in SMS; (d) evolution of relative phase du (blue) in MMS.

FIG. 7. Schematic plot for the role of
linear and nonlinear drives in an ELM
crash.
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means any unstable mode will be able to grow to large am-
plitude if the free energy source is maintained.

The mode amplitude also depends on wave-wave inter-
action. However, in this model, we find that the mode ampli-
tude is mainly set by the linear drive, while the energy
transfer among different modes is relatively weak. This is
verified by the strong consistency between the positive rela-
tive phase and mode growth shown in Figs. 6(c) and 6(d).
However, we notice that nonlinear wave-wave interaction
not only changes the amplitude of different modes, but also
scatters the relative phase. Such scattering naturally induces
phase fluctuations and leads a statistically distributed sc,
which is determined by the probability distribution function
of phase fluctuations du. Thus, the growth time of a mode is
also determined by nonlinear mode interaction.

The measurement of the possibility distribution function
(PDF) of the phase is an interesting issue because it is indica-
tive of the nonlinear interactions in the system. However, to
obtain a smooth, well converged PDF needs a lot of simula-
tion data and is very, very laborious and expensive. To get a
smooth PDF, we need to do an ensemble average. For the
case of PB turbulence, since the turbulence reaches a satu-
rated state, we can use a time average to replace the ensem-
ble average. So, we can get a smooth PDF for the PB
turbulence case, so long as the simulation is long enough.
However, for cases with an ELM crash, we cannot use a time
average to replace the ensemble average, on account of the
crash event. In this situation, we must repeat the nonlinear
simulation to get enough data points.

In addition, since the PCT is a statistical quantity, the
occurrence of ELMs is not a purely deterministic process.
There is no accurate exact criterion for the onset of ELM
crashes. In other words, once the pedestal is unstable to P-B
modes, an ELM crash can occur over a range of times, and
with different probability. Note that the growth of PB modes
is on the Alfv"en time scale, thus a longer observation period
can reduce the stochastic characters of the ELM crash.
Equivalently, if one observes from a longer time, one is
more likely to see an ELM crash for an unstable pedestal.
When we observe the evolution of pedestal on a pedestal
transport time scale, P-B turbulence has a long enough time
to sample an ensemble of phase coherence times with finite
probabilities. So, within a transport time scale, the mean
phase coherence time !sc determines the averaged evolution
of PB turbulence.

Overall, linear theory ignores this constraint due to sc,
which leads to a underestimate of the growth rate for the
onset of ELMs. The linear criterion c > 0 for the onset of
ELMs is a necessary but not sufficient condition.

C. Nonlinear criterion of the onset of ELMs

When the pedestal is unstable to P-B modes, turbulence
is generated at first. Thus, we take the turbulent state of
MMS at t ¼ 200sA as the initial perturbation. Considering
the fact that ELM crashes occur in most H-mode discharges,
the transport caused by the P-B turbulence is typically
weaker than the heat flux from the core. Thus, the pedestal
gradient can evolve and steepen until a crash is triggered.
The self-consistent simulation of this process requires a flux
driven code, which can simulate PB turbulence on a pedestal
transport time scale. Leaving this complicated matter to
future work; here, we model the evolution of the pedestal
pressure profile by scanning a range of initial pressure gra-
dients with other profiles fixed. The normalized pressure
gradients for different cases are shown in Fig. 8(a), where
the black curve with a ¼ 2:17 is used in previous SMS and
MMS.

The increase of pressure gradient not only increases the
linear growth rate, but also changes the shape of the growth
rate spectrum. Unlike the linear P-B theory, where only the
linear growth rate itself is thought to be important; in our
nonlinear model, the evolution of pedestal fluctuations also
depends on the shape of the growth rate spectra. Different
spectra can leads to different ELMs evolution.

When the pressure gradient increases, the evolution of
the fluctuations can be quite different, depending upon the
product of cðnÞ!scðnÞ. Three relevant possibilities are: (a) P-B
turbulence: cðnÞ!scðnÞ < ln10, for all n; (b) Isolated crash:
cðnÞ!scðnÞ > ln10; for n ¼ nd and cðnÞ!scðnÞ < ln10;
for n 6¼ nd; (c) Turbulent crash: cðnÞ!scðnÞ > ln10, for multi-
ple n. The value ln10 is used to measure whether the mode
can grow by an order of magnitude. Transport from P-B tur-
bulence can be enhanced by the higher pressure gradient,
and finally balance the heat flux from the core. In this
situation, an ELM-free H-mode is obtained with an MHD
turbulent pedestal. Thus, our results provide a possible
explanation for ELM-free H-mode. In the situation of an iso-
lated crash, the mode with mode number nd is called the
dominant mode, because only this mode grows to a large

FIG. 8. (a) a profiles; (b) linear growth
rates versus toroidal mode number.

056110-6 Xi, Xu, and Diamond Phys. Plasmas 21, 056110 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
132.239.66.163 On: Wed, 07 May 2014 16:27:52



amplitude, and triggers the crash. The dominant instability is
determined by both cðnÞ and scðnÞ. Dominance does not nec-
essarily correspond to the most linearly unstable mode. If
several modes can develop a long PCT at the same time and
grow together, we can also observe a large crash, which is a
“turbulent crash.”

Note that the growth rate spectrum cðnÞ and phase coher-
ence time sðnÞ are not independent, but have a strong rela-
tion. The phase coherence time, in fact, measures how long a
mode can sustain its own coherence pattern for mode growth.
Obviously, a mode with relatively larger amplitude has larger
“inertia” with which to sustain such a pattern. The mode am-
plitude depends its growth rate cðnÞ, thus the phase coherence
time must depend on the linear growth rate spectrum.
Consequently, when the pressure gradient increases, both the
linear growth rate and the phase coherence time change.

Figure 9 shows the evolution of pressure perturbations
at the outer mid-plane for two different cases. Both cases
start from the same turbulent state. For the case with
a ¼ 2:29, the P-B turbulence evolves and has modest radial
extent. No filamentary structure is generated, in this case. So
this is a case with P-B turbulence. Only for the case with
a ¼ 2:44, we can see a clear ELM crash at t ¼ 225sA. One
important point, here, is that the most unstable linear mode,
in this case, is n¼ 20, but the generated filament is n¼ 15
and the negative perturbation has n¼ 20. This result shows
that the triggering of ELMs and the generation of filamentary
structure are two different processes. The filaments do not
always correspond directly to the most unstable mode. They
depend on both linear instability and nonlinear mode
interaction.

Overall, our results demonstrate that the onset of an
ELM crash depends on both linear growth rate and the PCT.
For an ELM crash, the condition c!sc > ln10 should be satis-
fied. This condition is equivalent to one constraint on the
linear growth rate c > cc; where cc + ln10=!sc is the critical
growth rate. In Fig. 10(a), the maximum growth rates versus
different pressure gradients for cc=xA + 0:075 are plotted.
Unlike the linear criterion c > 0, our novel criterion is a non-
linear criterion, which depends on both linear instability and
nonlinear mode interaction, i.e., sc.

We arrive at a new picture of the onset of ELM crashes.
In Fig. 10(b), the black curve is the linear instability bound-
ary. Here, we must emphasize that, in principle, this is not
simply the ideal MHD instability boundary with ion diamag-
netic effects alone. The linear instability boundary should
include all those linear physics relevant to ELMs, like resis-
tivity, hyper-resistivity, electron inertia, and so on. Based on
this linear boundary, the nonlinear mode interaction will pro-
duce a nonlinear boundary, as shown in blue. Note that the
linear boundary sets a deterministic threshold; however, the
nonlinear boundary is probabilistic. With heating sources,
the pedestal first evolves from within the linearly stable
regime and crosses the linear boundary. ELM crashes do not
occur when the pedestal is linearly unstable, but rather P-B
turbulence is generated. The P-B turbulence causes turbulent
transport. If the transport is weaker than the heating, the ped-
estal will continue to evolve and eventually cross the nonlin-
ear boundary. At this point, an ELM crash is triggered,
within a pedestal transport time scale. It is also possible that
the enhanced turbulent transport balances the heating, so the
pedestal stops evolving and stays in the turbulent state

FIG. 9. Pressure perturbation pattern at the outer mid-plane for the case with a ¼ 2:29 (a)–(c) and the case with a ¼ 2:44 (d)–(f).
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without ELMs. In this case, we get an ELM-free H-mode
with a turbulent pedestal. So, the existence of ELM-free H-
mode is a natural result of our nonlinear model. Moreover,
the turbulent pedestal may generate different coherence pat-
terns, which may explain the existence of coherent structure
in ELM-free H-modes.

III. ELECTRON INERTIA AND HYPER-RESISTIVITY

During an ELM crash, fast reconnection occurs. Fast
reconnection generates a narrow current layer (Fig. 11), which
limits the utility of the simulation. Retaining the anomalous
transport of current can resolve this problem. In a previous
study, a constant hyper-resistivity was included in BOUTþþ
to model anomalous current transport.7 The hyper-resistivity is
not determined by the simulation itself and is based on theoret-
ical estimates. A self-consistent simulation with self-generated
hyper-resistivity is of great importance to the study of ELMs.
Here, we report on our attempt to accomplish this by including
electron inertia in P-B turbulence. Of course, other mecha-
nisms may also be relevant in resolving the current layer, such
as the parallel electron pressure in Ohm’s law,13,14 and we
will study this issue by using our 6-field model.15

A. Linear impact of electron inertia

With the electron inertia, Ohm’s law changes from that
of Eq. (3) to

%me

e

@~uke
@t

% me

e
VET $r~uke %

me

e
VE $ruke0 þ

@Ak

@t

¼ %@k/T þ
g
l0

r2
?Ak %

gH
l0

r4
?Ak: (10)

It is widely known that electron inertia can weaken
shear Alfv"en stabilization and thus destabilize P-B modes.16

This is easy to understand via a linear local analysis. Keep
only the time derivative term with electron inertia and the
linearized Eq. (12), we get

% me

n0l0e2
@r2

?Ak

@t
þ
@Ak

@t
¼ %@k/; (11)

Âk ¼
kk

xð1þ d2ek
2
?Þ

/̂: (12)

Here, de ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=n0l0e2

p
is the collision-less electron skin

depth and k2? ¼ k2x þ m2=a2 is the perpendicular wave num-
ber. Substituting Eq. (12) into the linearized Eq. (1), we get

%ix-̂ ¼ 1

l0
kkk

2
?

kk

xð1þ d2ek
2
?Þ

/̂ þ R:H:S:

Note that the first term on the RHS represents shear
Alfv"en stabilization from field line bending, which is reduced
by a factor of 1=ð1þ d2ek

2
?Þ when electron inertia is included.

The destabilizing effect of electron inertia decreases with
increasing density. Our linear simulation results also verify
this point. In Fig. 12, we can see when density is low, the
destabilization effect is strong and when density is high, the
destabilization is weak. For n0 ¼ 1019 m%3, de ¼ 1:67mm.
Note that the width of the resistive current sheet DJ

, R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xA=ðcPBSÞ

p
is about 10–100 microns and the width of

hyper-resistive current sheet DH , RðxA=ðcPBSHÞÞ
1=4

+ 1:78mm for SH ¼ 1012.7 So the electron skin depth is
comparable to the width of hyper-resistive current sheet. This
is why the electron inertia may be able to generate enough
current relaxation and replace the hyper-resistivity term in
Ohm’s law.

With electron inertia, the threshold is also reduced as
shown in Fig. 13. For density as low as n0 ¼ 1019m%3, the a
value needed for an unstable mode is 10% smaller than the
original case, while the shift is quite small for the high den-
sity case with n0 ¼ 5# 1019m%3. Thus, even for the calcula-
tion of linear instability, electron inertia is important if the

FIG. 10. (a) Maximum linear growth
rate versus a; (b) schematic plot for
ELM crash.

FIG. 11. The radial profile of current perturbation in nonlinear ELM simula-
tions without hyper-resistivity.
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density is low. This reminds us that in the analysis of the
quiescent high (QH) confinement mode,4 which is a low den-
sity regime, electron inertia should be retained.

Note that non-ideal effects, such as electron inertia and
resistivity, can reduce the linear ideal MHD threshold, while
the nonlinear effects increase the threshold. The ultimate
result of non-ideal and nonlinear shifts on the threshold can

be quite close to the ideal MHD boundary. Considering the
experimental error bars, it is then not surprising that ideal
MHD can fit the experimental results well. However, the
underlying physics of the ideal MHD threshold and the non-
linear threshold is quite different.

B. Nonlinear simulation with electron inertia

The nonlinear electron current convection term is
believed to be able to generate anomalous current transport
if there is a certain level of background turbulence.
According to our previous result, before the onset of ELMs,
P-B turbulence is generated. Thus, it is interesting to see if
the P-B turbulence can generate enough current transport for
the pedestal to go through an ELM crash.

Here, we choose the case with a ¼ 1:96 with density
n0 ¼ 1019m%3. This case is stable to P-B modes, but unstable
to electron inertial PB modes. From Fig. 14, we can see that
the filament starts to appear and the perturbation extends
radially. However, the simulation ultimately fails due to the
formation of narrow current layers. In Fig. 15, the evolution
of the radial spectrum of current is shown. At the last time
step, we can see that strong high-kx components appear.
This result shows that P-B turbulence alone is not sufficient
to generate the necessary current transport. More quantitative
measurement of the current transport during an ELM crash
will be our next step. And it is also interesting to compare
the current transport processes during an ELM crash with
other physics process in plasmas, as described in Ref. 17.

Note that in the pedestal, there should be some ambient
micro-turbulence,18 like KBM turbulence or electron temper-
ature gradient turbulence. Such micro-turbulence can also
generate current relaxation. However, to self-consistently
simulate such micro-turbulence in a MHD code is a great
challenge. In particular, either a dynamic sub-grid scale
model or a multiscale simulation is necessary.

IV. SUMMARY

In conclusion, we find that the triggering of an ELM
crash is a nonlinear, random process, which depends on both
linear growth rate cðnÞ and the statistical phase coherence
time, scðnÞ. There is no purely deterministic criterion for the
onset of ELMs available at this time. Over longer time
scales, the onset of ELMs can be predicted by the probabilis-
tic criterion c > cc + ln10=!sc. ELMs can be controlled by
changing the growth rate spectrum or by shortening the PCT.

FIG. 12. Linear growth rates versus toroidal mode number for low density
cases (blue) and high density cases (red). Solid curves are with electron iner-
tia and dashed curves are without electron inertia. The solid black curve
shows the ideal MHD calculation. The unit for the density is 1019m%3.

FIG. 13. Linear growth rate versus a for low density case with n0 ¼
1019m%3 (blue) and high density case with n0 ¼ 5# 1019m%3 (red). Solid
curves are without electron inertia and dashed curves are with electron iner-
tia. The solid black curve shows the ideal MHD calculation. The unit for the
density is 1019m%3.

FIG. 14. (a) Pressure perturbation at
the outer mid-plane; (b) time evolution
of ELM size.
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The control of cðnÞ and scðnÞ via flow shear, magnetic shear,
or other equilibrium quantities, the spatial-temporal evolu-
tion of the relative phase and of scðnÞ, and also the effect of
finite diffusion on phase evolution are all important issues to
study in the future. More generally, this study points toward
the key role of relative phase evolution in controlling bursty
relaxation.

We also demonstrate that electron inertia must be
retained in low density regimes like QH mode. However, a
P-B turbulence alone with electron inertia cannot generate
enough current transport. Thus, a nonlinear ELM simulation
with self-consistent electron dissipation is intrinsically a
multiscale problem.
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